

### GOVERNMENT OF KERALA GROUNDWATER DEPARTMENT

### NATIONAL HYDROLOGY PROJECT



**GROUNDWATER QUALITY MONITORING REPORT** 2019

#### Water Quality Status of Hard Rock Terrain of Kerala, 2019

The Analytical laboratory at Thiruvananthapuram monitors the water quality of the observation wells of the department in the districts of Trivandrum, Kollam, Kottayam, Pathanamthitta and Alappuzha

The Analytical laboratory at Ernakulam monitors the water quality of the observation wells of the department in the districts of Ernakulam, Idukki, Thrissur, Palakkad and Malappuram.

The Analytical laboratory at Kozhikode monitors the water quality of the observation wells of the department in the districts of Kozhikode, Wayanad, Kannur and Kazargode.

The samples were analysed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Sodium (Na), Potassium (K), Total Hardness (TH), Calcium (Ca), Magnesium (Mg), Total Alkalinity (TA), Carbonate (CO<sub>3</sub>), Bicarbonate (HCO<sub>3</sub>), Sulphate (SO<sub>4</sub>), Chloride (Cl), Nitrate Nitrogen (NO<sub>3</sub>-N), Iron (Fe) and Fluoride (F).

|   | Drinking water              | r specification (IS 10500:20                 | 12)                                                               |  |  |
|---|-----------------------------|----------------------------------------------|-------------------------------------------------------------------|--|--|
|   | Parameter                   | Requirement<br>( Acceptable Limit)<br>(mg/L) | Permissible Limit in the<br>Absence of Alternate<br>Source (mg/L) |  |  |
| 1 | pH                          | 6.5 - 8.5                                    | No relaxation                                                     |  |  |
| 2 | Electrical conductivity/TDS | 500                                          | 2000                                                              |  |  |
| 3 | Turbidity(NTU)              | 1                                            | 5                                                                 |  |  |
| 4 | Total Hardness(mg CaCo3/l)  | 200                                          | 600                                                               |  |  |
| 5 | Calcium (mg/L)              | 75                                           | 200                                                               |  |  |
| 6 | Magnesium(mg/L)             | 30                                           | 100                                                               |  |  |
| 7 | Sodium(mg/L)                | _                                            | -                                                                 |  |  |
| 8 | Potassium (mg/L)            | -                                            | -                                                                 |  |  |

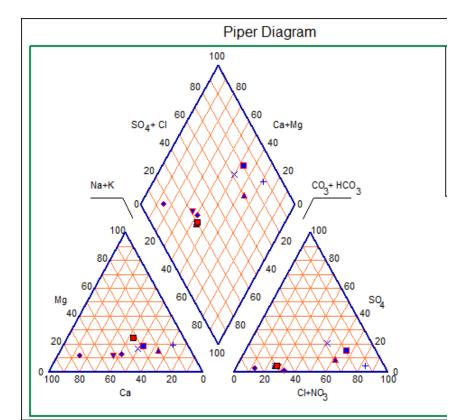
| 9  | Total Alkalinity(mg CaCo3/L) | 200 | 600           |
|----|------------------------------|-----|---------------|
| 10 | Carbonate(Mg/L)              | _   | _             |
| 11 | Sulphate(mg/L)               | 200 | 400           |
| 12 | Chloride(mg/L)               | 250 | 1000          |
| 13 | Fluoride(mg/L)               | 1   | 1.5           |
| 14 | Iron(mg/L)                   | 0.3 | No relaxation |
| 15 | Nitrate-N (mg/L)             | 10  | No relaxation |
| 16 | Total Coliform(MPN/100ml)    | Nil | Nil           |
| 17 | Faecal Coliform(MPN/100ml)   | Nil | Nil           |

Results of the wells from hardrock terrain as classified by the Nodal Officer were interpreted for water quality status The physico-chemical parameters of the samples showed the following deviation (**in percentage**) with respect to Drinking Water Standards BIS (**IS 10500: 2012**)

| District       | Total<br>no of<br>samples | pH>8.5 | pH<6.5 | EC>500<br>μS/cm | NO3-<br>N>10<br>mg/L | Fe>0.3<br>mg/L |
|----------------|---------------------------|--------|--------|-----------------|----------------------|----------------|
| Trivandrum     | 58                        | Nil    | 8      | 8               | 16                   | 22             |
| Kollam         | 30                        | Nil    | 9      | 9               | 18                   | 6              |
| Kottayam       | 49                        | Nil    | Nil    | 2               | Nil                  | 71             |
| Pathanamthitta | 38                        | Nil    | 5      | 5               | 3                    | Nil            |
| Ernakulam      | 28                        | Nil    | 1      | Nil             | 3                    | 32             |
| Idukki         | 46                        | Nil    | 25     | Nil             | Nil                  | 75             |
| Thrissur       | 37                        | 20     | Nil    | Nil             | 3                    | 73             |
| Palakkad       | 65                        | Nil    | Nil    | 6               | 2                    | 87             |
| Malappuram     | 31                        | Nil    | Nil    | Nil             | 7                    | 65             |
| Kozhikode      | 32                        | Nil    | 9      | 6               | 3                    | 43             |
| Kannur         | 35                        | Nil    | 13     | 5               | 5                    | 55             |

| Kasaragod | 37 | Nil | 4 | Nil | Nil | 97 |
|-----------|----|-----|---|-----|-----|----|
| Wayanad   | 26 | Nil | 3 | Nil | Nil | 7  |

#### **Thiruvananthapuram District**


The departmental samples of Trivandrum District collected from various hard rock terrain areas were analysed for pH,Electrical Conductivity (EC), Total Dissolved Solids (TDS), Sodium (Na), Potassium (K), Total Hardness (TH), Calcium (Ca), Magnesium (Mg), Total Alkalinity (TA), Carbonate (CO<sub>3</sub>), Bicarbonate (HCO<sub>3</sub>), Sulphate (SO<sub>4</sub>), Chloride (Cl), Nitrate Nitrogen (NO<sub>3</sub>-N), Iron (Fe) and Fluoride (F).

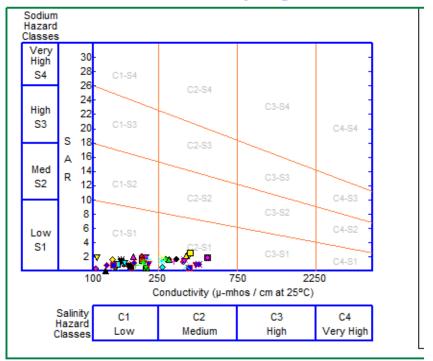
The results of the physico-chemical parameters of the above samples showed that most of the samples for majority of parameters lie under the acceptable limits set by BIS (2012)

|                        | with BIS (2012) standards |         |        |                  |                   |  |  |  |  |  |  |  |  |
|------------------------|---------------------------|---------|--------|------------------|-------------------|--|--|--|--|--|--|--|--|
| Variables              | Minimum                   | Maximum | Mean   | BIS              | (2012)            |  |  |  |  |  |  |  |  |
|                        |                           |         |        | Acceptable limit | Permissible limit |  |  |  |  |  |  |  |  |
| pH                     | 3.7                       | 8.5     | 7.52   | 6.5-8.5          |                   |  |  |  |  |  |  |  |  |
| EC                     |                           |         |        |                  |                   |  |  |  |  |  |  |  |  |
| (µS/cm)                | 190.53                    | 224.44  | 206.63 | -                |                   |  |  |  |  |  |  |  |  |
| TDS (mg/l)             | 114.28                    | 134.69  | 123.98 | 500              | 2000              |  |  |  |  |  |  |  |  |
| Na (mg/l)              | 16.93                     | 19.35   | 18.09  | -                |                   |  |  |  |  |  |  |  |  |
| K (mg/l)               | 2.39                      | 4.87    | 3.84   | -                |                   |  |  |  |  |  |  |  |  |
| TH (mg/l               |                           |         |        | 200              | 600               |  |  |  |  |  |  |  |  |
| of CaCO3)              | 71.06                     | 78.94   | 74.53  | 200              | 000               |  |  |  |  |  |  |  |  |
| Ca (mg/l)              | 13.58                     | 17.54   | 15.12  | 75               | 200               |  |  |  |  |  |  |  |  |
| Mg (mg/l)              | 2.97                      | 5.53    | 3.91   | 30               | 100               |  |  |  |  |  |  |  |  |
| TA (mg/l               |                           |         |        | 200              | 600               |  |  |  |  |  |  |  |  |
| of CaCO3)              | 45.26                     | 53.26   | 48.69  | 200              | 000               |  |  |  |  |  |  |  |  |
| CO <sub>3</sub> (mg/l) | 2.55                      | 3.50    | 2.93   | -                | -                 |  |  |  |  |  |  |  |  |
| HCO <sub>3</sub>       |                           |         |        |                  |                   |  |  |  |  |  |  |  |  |
| (mg/l)                 | 48.75                     | 56.59   | 52.20  | -                | -                 |  |  |  |  |  |  |  |  |
| SO <sub>4</sub> (mg/l) | 7.42                      | 7.42    | 7.42   | 200              | 400               |  |  |  |  |  |  |  |  |
| Cl (mg/l)              | 25.44                     | 29.21   | 27.14  | 250              | 1000              |  |  |  |  |  |  |  |  |
| Fe (mg/l)              | 0                         | 9.6     | 1.70   | 0.3              | NR                |  |  |  |  |  |  |  |  |
| F (mg/l)               | 0.10                      | 0.10    | 0.10   | 1                | 1.5               |  |  |  |  |  |  |  |  |
| NO3-N                  |                           |         |        | 10               | NR                |  |  |  |  |  |  |  |  |
| (mg/L)                 | 0                         | 19.2    | 3.22   | 10               | INK               |  |  |  |  |  |  |  |  |

Statistical summary of physicochemical parameters and its comparison with BIS (2012) standards

#### **Hydrochemical Facies and Water type**




From the piper trilinear diagram it is depicted that the major hydrogeochemical facies are Na-Cl water type followed by mixed CaHCO<sub>3</sub>, Mixed Ca-Mg-Cl and mixed Ca- Na- HCO<sub>3</sub>.

Piper diagram showing the relationship between dissolved ions in the water samples

#### Irrigation Suitability

Majority of the water samples of the study area cluster around the good water quality field C1S1 and C2S1 zones, indicating low to medium salinity water and are suitable for irrigation.

#### **Irrigation water quality of samples**

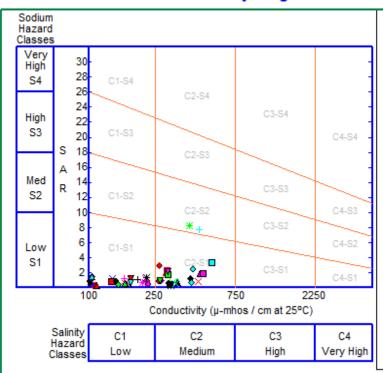


#### **US Salinity Diagram**

#### Kollam District

The departmental samples of Kollam District collected wereanalysed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Sodium (Na), Potassium (K), Total Hardness (TH), Calcium (Ca), Magnesium (Mg), Total Alkalinity (TA), Carbonate (CO<sub>3</sub>), Bicarbonate (HCO<sub>3</sub>), Sulphate (SO<sub>4</sub>), Chloride (Cl), Nitrate Nitrogen (NO<sub>3</sub>-N), Iron (Fe) and Fluoride (F).

The results of the physico-chemical parameters of the above samples showed that most of the samples for majority of parameters lie under the acceptable limits set by BIS (2012).


|                         | BIS (2012) standards |         |        |                  |                   |  |  |  |  |  |  |  |  |
|-------------------------|----------------------|---------|--------|------------------|-------------------|--|--|--|--|--|--|--|--|
| Variables               | Minimum              | Maximum | Mean   | BIS (2012)       |                   |  |  |  |  |  |  |  |  |
|                         |                      |         |        | Acceptable limit | Permissible limit |  |  |  |  |  |  |  |  |
| pН                      | 7.23                 | 7.64    | 7.43   | 6.5-8.5          |                   |  |  |  |  |  |  |  |  |
| EC (µS/cm)              | 173.95               | 274.97  | 217.72 | -                |                   |  |  |  |  |  |  |  |  |
| TDS (mg/l)              | 104.43               | 164.96  | 130.65 | 500              | 2000              |  |  |  |  |  |  |  |  |
| Na (mg/l)               | 13.92                | 33.46   | 21.34  | -                |                   |  |  |  |  |  |  |  |  |
| K (mg/l)                | 2.40                 | 4.16    | 3.17   | -                |                   |  |  |  |  |  |  |  |  |
| TH (mg/l)               | 41.78                | 69.57   | 54.99  | 200              | 600               |  |  |  |  |  |  |  |  |
| Ca (mg/l)               | 11.44                | 18.74   | 15     | 75               | 200               |  |  |  |  |  |  |  |  |
| Mg (mg/l)               | 2.80                 | 6.99    | 4.77   | 30               | 100               |  |  |  |  |  |  |  |  |
| TA (mg/l)               | 30.22                | 53.19   | 40.43  | 200              | 600               |  |  |  |  |  |  |  |  |
| $CO_3 (mg/l)$           | 1.10                 | 3.70    | 2.15   | -                | -                 |  |  |  |  |  |  |  |  |
| HCO <sub>3</sub> (mg/l) | 36.10                | 58.78   | 46.72  | -                | -                 |  |  |  |  |  |  |  |  |
| SO <sub>4</sub> (mg/l)  | 10.02                | 11.69   | 10.86  | 200              | 400               |  |  |  |  |  |  |  |  |
| Cl (mg/l)               | 23.35                | 45.46   | 31.73  | 250              | 1000              |  |  |  |  |  |  |  |  |
| Fe (mg/l)               | 0.05                 | 0.23    | 0.12   | 0.3              | NR                |  |  |  |  |  |  |  |  |
| F (mg/l)                | 0.27                 | 0.31    | 0.29   | 1                | 1.5               |  |  |  |  |  |  |  |  |
| NO3-N                   |                      |         |        | 10               | ND                |  |  |  |  |  |  |  |  |
| (mg/L)                  | 3.48                 | 3.95    | 3.71   | 10               | NR                |  |  |  |  |  |  |  |  |

Statistical summary of physicochemical parameters and its comparison with BIS (2012) standards

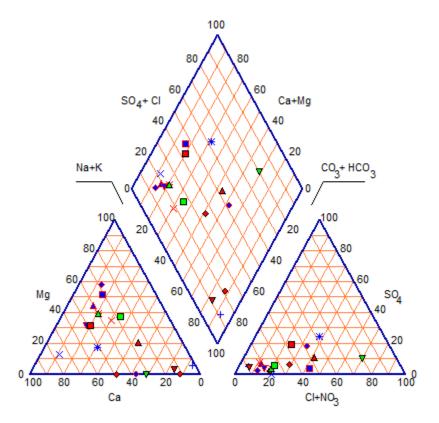
#### Irrigation Suitability

Majority of the water samples of the study area cluster around the good water quality field C1S1 and C2S1 zones, indicating low to medium salinity water and are suitable for irrigation.

#### Irrigation water quality of samples



#### US Salinity Diagram

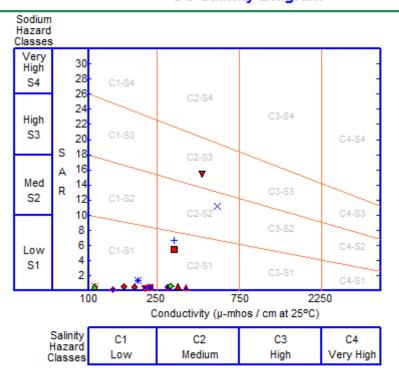

#### Kottayam District

The departmental samples of Kottayam District collected from various hard rock terrain areas were analysed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Sodium (Na), Potassium (K), Total Hardness (TH), Calcium (Ca), Magnesium (Mg), Total Alkalinity (TA), Carbonate (CO<sub>3</sub>), Bicarbonate (HCO<sub>3</sub>), Sulphate (SO<sub>4</sub>), Chloride (Cl), Nitrate Nitrogen (NO<sub>3</sub>-N), Iron (Fe) and Fluoride (F).

The results of the physico-chemical parameters of the above samples showed that pH value is mainly towards the alkaline side. BW 10 (Uzhavoor) and BW 19 (Eratupetta) are showing higher sodium values. Calcium bicarbonate hardness is found in some of the wells. (KTM OW 13 and BW3).

#### **HydrochemicalFacies and Water type**

From the piper trilinear diagram it is inferred that the water type is generally mixed CaHCO<sub>3</sub>. Mixed Ca-Mg-Cl type and NaHCO<sub>3</sub> type and NaCl type are also seen.




Piper diagram showing the relationship between dissolved ions in the water samples

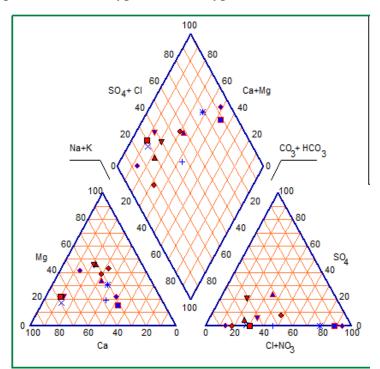
#### Irrigation Suitability

Majority of the water samples of the study area cluster around the good water quality field C1S1 and C2S1 zones, indicating low to medium salinity water and are suitable for irrigation. Above two wells BW 10 and BW 19 are C2S# and C2S2 region showing poor irrigation suitability.

### Irrigation water quality of samples



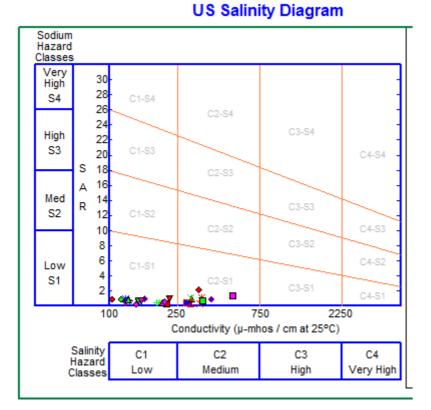
#### **US Salinity Diagram**


#### **Pathanamthitta District**

The departmental samples of Pathanamthitta District collected from various hard rock terrain areas were analysed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Sodium (Na), Potassium (K), Total Hardness (TH), Calcium (Ca), Magnesium (Mg), Total Alkalinity (TA), Carbonate (CO<sub>3</sub>), Bicarbonate (HCO<sub>3</sub>), Sulphate (SO<sub>4</sub>), Chloride (Cl), Nitrate Nitrogen (NO<sub>3</sub>-N), Iron (Fe) and Fluoride (F).

The results of the physico-chemical parameters of the above samples showed that most of the samples for majority of parameters lie under the acceptable limits set by BIS (2012). The pH value is mainly between 6.5 to 8.5. Nitrate within below 10 mg/L except for PTA 23 (Angadikal) Iron values are also found to be within limit for most of the wells. Electircal conductivity values are below 500  $\mu$ S/cmand total hardness is also below 200 mg/L of CaCO3. Iron values above BIS can be seen only in 17% of wells.

#### HydrochemicalFacies and Water type


From the piper trilinear diagram it is inferred that the water type is generally mixed CaHCO<sub>3</sub>. Mixed Ca-Mg-Cl type and NaHCO<sub>3</sub> type and NaCl type are also seen.



Piper diagram showing the relationship between dissolved ions in the water samples

#### Irrigation Suitability

Majority of the water samples of the study area cluster around the good water quality field C1S1 and C2S1 zones, indicating low to medium salinity water and are suitable for irrigation. Irrigation water quality of samples



#### **ErnakulamDistrict**

Charnikite and Gneiss are the major crystalline rocks found in the Ernakulam district. 24wells are in Charnikite region and 4 wells in Gnessic region.

The pH varies from 3.2 to 8.5 with an average of 7.7. Except three open wells (GWE 01-kizhakkambalam, GWE 02- Rayamangalam and GWE 03- Kunnathunadu South) pH is within the desirable range of drinking water. Among these three wells GWE 01 the well water is highly acidic (less than 4) due to pollution.

Total dissolved solids are found to be within the desirable limit of 500 mg/L in the hard rock region. It varies from 25mg/L to 400 mg/L with an average of 115 mg/L.

Groundwater in the area is found to be soft to moderately hard with value vary from 15 mgCaCO<sub>3</sub>/L to 205 mgCaCO<sub>3</sub>/L with an average of 60 mgCaCO<sub>3</sub>/L. Moderately hard water is seen in BW 102, BW103, BW104, BW107, BW110.

The minimum, maximum and average values of the major ions in the hard rock region of the district is shown in the table.

| Ion     | Ca2+ | Mg  | Na  | К   | HCO3 | Cl | SO4 |
|---------|------|-----|-----|-----|------|----|-----|
| Min     | 3.7  | 0   | 2.3 | 0.7 | 0    | 6  | 0   |
| Max     | 66   | 24  | 96  | 14  | 260  | 77 | 35  |
| Average | 14   | 6.6 | 15  | 3.5 | 72   | 17 | 3.3 |

NO<sub>3</sub>-N is found to be above 10 mg/L in GWE01. The low pH value, high NO<sub>3</sub>-N and NaCl type water clearly indicates that there is a pollution source nearby. Iron value varies from trace to 9 mg/L with an average of 1. Very high values are observed in BW100, BW105, BW106, BW112, BW117 and BW123.

Seasonal variation in water quality is observed due to the fluctuation in water level.

The major water types found in the area are CaHCO<sub>3</sub> and mixed type (no dominant anion or cation). Waters draining igneous and metamorphic rocks are relatively dilute and have bicarbonate as the major anion and sodium and calcium as the major cations. The other types seen in the area are NaCl (GWE 01) and NaHCO<sub>3</sub> (BW101) types

The irrigation suitability shows that the C1S1, C2S1 and C2S2.

#### **ThrissurDistrict**

Charnikite and Gneiss are the major crystalline rocks found in the Thrissur district. 24wells are in Charnikite region and 13 wells in Gnessic region.

The pH varies from 6.8 to 9.8 with an average of 8.2. pH is found to slightly alkaline. Total dissolved solids are found to be within the desirable limit of 500 mg/L in the hard rock region. It varies from 27 mg/L to 426 mg/L with an average of 144 mg/L. Total dissolved solis is found to be below 100mg/L in TSR 142, TSR 138, TSR 145 and TSR 146.

Groundwater in the area is found to be soft to hard with value vary from 10 mgCaCO<sub>3</sub>/L to 335 mgCaCO<sub>3</sub>/L with an average of 90 mgCaCO<sub>3</sub>/L. Hard water is seen in KarumathraTSR 143, Karussery TSR 112, VadamaTSR 116,Mattathur TSR113 and NellayiTSR114 and hardness is of temporary nature.

The minimum, maximum and average values of the major ions in the hard rock region of the district is shown in the table.

| Ion     | Ca2+ | Mg   | Na   | К   | HCO3 | Cl  | SO4 |
|---------|------|------|------|-----|------|-----|-----|
| Min     | 2    | 0    | 2.1  | 0.2 | 0    | 8   | 0   |
| Max     | 68   | 20   | 123  | 11  | 217  | 118 | 93  |
| Average | 19   | 10.7 | 16.3 | 3.4 | 72   | 27  | 15  |

Sodium is found to be above 100mg/Lin Nellayi TSR114 and NO<sub>3</sub>-N is found to be above 5mg/L in TSR129. Iron value varies from trace to 9 mg/L with an average of 0.7 mg/L. High values are observed in TSR122,TSR123, TSR124,TSR126, TSR130,TSR133 and TSR137.

The major water types found in the area are CaHCO<sub>3</sub> and mixed type (no dominant anion or cation). Waters draining igneous and metamorphic rocks are relatively dilute and have bicarbonate as the major anion and sodium and calcium as the major cations. The irrigation suitability shows that the C1S1, C2S1and C2S2.

#### PALAKKAD DISTRICT

Charnikite, Gneiss and Hornblend Schist are the major crystalline rocks found in the Palakkad district. 15wells are in Charnikite region, 50 wells in Gnessic region and one well is in HornblendSchist . The pH varies from 6.1 to 8.9 with an average of 8.3. pH is found to be slightly alkaline.Total dissolved solids are found to be above the desirable limit of 500 mg/L in the hard rock region. It varies from 59 mg/L to 1000mg/L with an average of 275 mg/L. Total dissolved solis is found to be above 500mg/L in Chittur 126, Pattambi 136, Ozhalapathy 141 and Nalleppilly 150.

Groundwater in the area is found to be soft to very hard with value vary from 35 mgCaCO<sub>3</sub>/L to 420 mgCaCO<sub>3</sub>/L with an average of 150 mgCaCO<sub>3</sub>/L. Hard water is seen in Thathamangalam 150, Ozhalapathy 141,Kuzhalmannam PKD S3, Kollengode 148, Nattukal 139,Pattambi 136, Vadakkancherri 121 PKD, Marutharode 160PKD10,Nellaya 137 and Pudukode 144.Permanent hardness is found in certain locations.

The minimum, maximum and average values of the major ions in the hard rock region of the district are shown in the table.

| Ion     | Ca2+ | Mg | Na  | Κ   | HCO3 | Cl  | SO4 |
|---------|------|----|-----|-----|------|-----|-----|
| Min     | 4    | 0  | 3.8 | 0.4 | 0    | 6   | 0   |
| Max     | 80   | 85 | 175 | 71  | 350  | 325 | 109 |
| Average | 30   | 19 | 40  | 8.6 | 119  | 62  | 22  |

Sodium is found to be above 100mg/L in Kuzhalmannam and Kozhinjampara. NO<sub>3</sub>-N is found to be above 10mg/L in Mannarkkad. Iron value varies from trace to 7.9mg/L with an average of 0.9 mg/L. Fluoride content varies from 0 to 1.85mg/L with an average of 0.4 mg/L.High fluoride content is seen in Palakkad, Kuzhalmannam, Elavancherry, Nattukal, Pattambi and Thathamangalam.

The major water types found in the area are CaHCO<sub>3</sub> and mixed type (no dominant anion or cation). Waters draining igneous and metamorphic rocks are relatively dilute and have bicarbonate as the major anion and sodium and calcium as the major cations. The other types seen in the area are NaCl and CaCl<sub>2</sub>typesThe irrigation suitability shows that the C1S1, C2S1and C3S1.

#### **Malappuram District**

Charnikite, Gneiss and Hornblend Schist are the major crystalline rocks found in the Malappuram district. 14wells are in Charnikite region, 15 wells in Gnessic region and 2 wells in HornblendSchist. The pH varies from 6.2to 8.9 with an average of 7.9. pH is found to be slightly alkaline.Total dissolved solids are found to be within the desirable limit of 500 mg/L. It varies from 47 mg/L to 360mg/L with an average of 180mg/L.

Groundwater in the area is found to be soft to hard with value vary from 25 mgCaCO<sub>3</sub>/L to 320 mgCaCO<sub>3</sub>/L with an average of 112 mgCaCO<sub>3</sub>/L. Hard water is seen in Pookkottoor and Perinthalmanna area. Hardness is of Permanent type.

The minimum, maximum and average values of the major ions in the hard rock region of the district are shown in the table.

| Ion     | Ca2+ | Mg  | Na | К   | HCO3 | Cl  | SO4 |
|---------|------|-----|----|-----|------|-----|-----|
| Min     | 4    | 2.4 | 5  | 1.5 | 0    | 5   | 0   |
| Max     | 76   | 46  | 62 | 62  | 342  | 157 | 106 |
| Average | 22   | 14  | 18 | 18  | 85   | 33  | 13  |

Comparatively high chloride content is found in Kottakkal and sulphate in Perinthalmanna. Iron value varies from trace to 7.8mg/L with an average of 1.6 mg/L.

The major water types found in the area are CaHCO<sub>3</sub> and mixed type (no dominant anion or cation). Waters draining igneous and metamorphic rocks are relatively dilute and have bicarbonate as the major anion and sodium and calcium as the major cations. The other types seen in the area are CaCl<sub>2</sub>type.The irrigation suitability shows that the C1S1, C2S1and C3S1.

#### **IDUKKI**

Charnikite, Gneiss and Granite are the major crystalline rocks found in the Idukki district. 22wells are in Charnikite region, 18wells in Gnessic region and 6 wells in Granite.

The pH varies from 6.2 4.6to 8.7 with an average of 6.7. pH is found to be slightly acidic.Total dissolved solids varies from 10 mg/L to546/L with an average of 124mg/L. Total dissolved solids of Kalkoonthal is above desirable limit.

Groundwater in the area is found to be soft to hard with value vary from 15 mgCaCO<sub>3</sub>/L to 250 mgCaCO<sub>3</sub>/L with an average of 66 mgCaCO<sub>3</sub>/L. Hard water is seen in Pooppara well.

The minimum, maximum and average values of the major ions in the hard rock region of the district are shown in the table.

| Ion | Ca2+ | Mg | Na  | К    | HCO3 | Cl  | SO4 |
|-----|------|----|-----|------|------|-----|-----|
| Min | 4    | 0  | 0.5 | 0.3  | 0    | 3   | 0   |
| Max | 38   | 39 | 154 | 16.5 | 237  | 192 | 76  |

| Average | 15 | 6.9 | 17 | 3.7 | 50 | 26 | 8.7 |
|---------|----|-----|----|-----|----|----|-----|

Comparatively high sodium and chloride content is found in Ayyappancoil Iron value varies from trace to 9.7 mg/L with an average of 1.1 mg/L.

The major water types found in the area are  $CaHCO_3$  and mixed type (no dominant anion or cation. The irrigation suitability shows that the C1S1 and C2S1.

#### **KOZHIKODE**

The department samples of Kozhikode district collected from various hard rock terrain were analyzed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Sodium (Na), potassium (K), Total Hardness (TH), Calcium (Ca), Magnesium (Mg), Total Alkalinity (TA), Carbonate (CO<sub>3</sub>), Bicarbonate (HCO<sub>3</sub>), Sulphate (SO<sub>4</sub>), Chloride (Cl), Nitrate-Nitrogen (NO<sub>3</sub>-N), and Iron (Fe). Fig 1 illustrates the spatial distribution of water quality samples of hard rock terrain in Kozhikodedistrict.

The results of the physico-chemical parameters (Table 1) of the above samples show that most of the samples for majority of parameters lie within the acceptable limits set by BIS (2012).

| Variables             | Minimum | Maximum | Mean  | BIS (2012)          |                   |
|-----------------------|---------|---------|-------|---------------------|-------------------|
|                       |         |         |       | Acceptable<br>limit | Permissible limit |
| рН                    | 3.7     | 8.3     | 7     | 6.5-8.5             |                   |
| EC<br>(μS/cm)         | 40      | 2303    | 286   | -                   |                   |
| TDS<br>(mg/l)         | 24      | 1382    | 171.6 | 500                 | 2000              |
| Na (mg/l)             | 3.6     | 356     | 26.44 | -                   |                   |
| K (mg/l)              | 0       | 49.35   | 6.28  | -                   |                   |
| TH (mg/l<br>of CaCO3) | 0       | 298     | 68.43 | 200                 | 600               |
| Ca (mg/l)             | 2.1     | 70      | 19.1  | 75                  | 200               |
| Mg (mg/l)             | 1       | 46.5    | 5.13  | 30                  | 100               |

 Table 1. Statistical summary of physicochemical parameters and its

 with BIS (2012)standards

| TA (mg/l<br>of CaCO3)  | 0   | 145.3 | 34.49 | 200 | 600  |
|------------------------|-----|-------|-------|-----|------|
| CO3                    |     |       |       |     |      |
| (mg/l)                 | 0   | 18.2  | 0.57  | -   | -    |
| HCO <sub>3</sub>       |     |       |       |     |      |
| (mg/l)                 | 0   | 148   | 43.61 | -   | -    |
| SO <sub>4</sub> (mg/l) | 1   | 213   | 25.7  | 200 | 400  |
| Cl (mg/l)              | 9.5 | 589   | 44.61 | 250 | 1000 |
| Fe (mg/l)              | 0   | 8.76  | 1.25  | 0.3 | NR   |
| NO <sub>3</sub> -N     |     |       |       | 10  | ND   |
| (mg/L)                 | 0   | 16    | 3.73  | 10  | NR   |

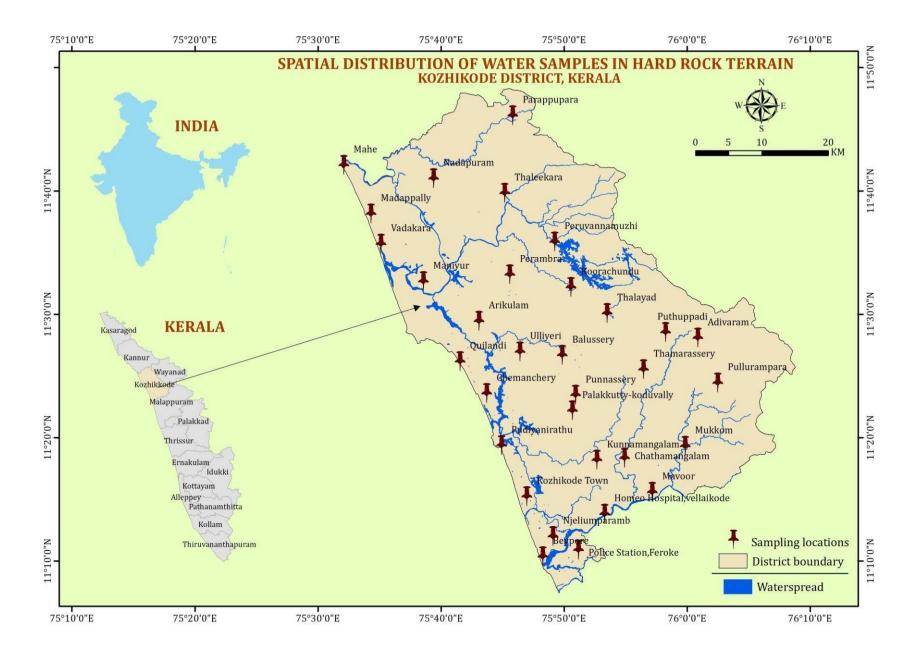



Fig 1. Spatial distribution of sampling locations

#### HydrochemicalFacies and Water type

From the piper trilinear diagram (Fig. 2) it is depicted that the major hydrogeochemical facies are Na-Cl water type followed by mixed Ca-Mg-Cl type.

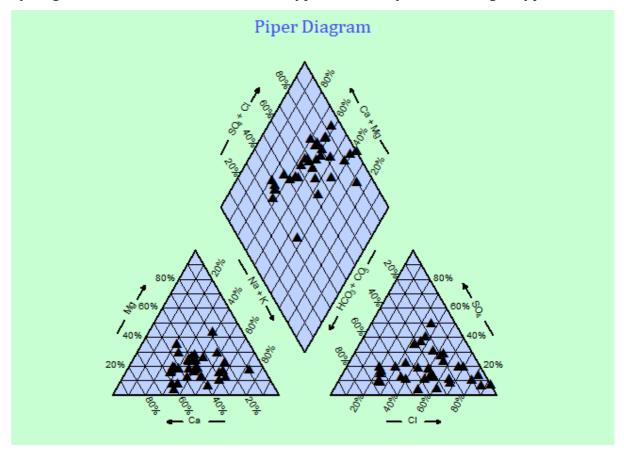



Fig. 2 Piper (1953) diagram showing the relationship between dissolved ions in the water samples

#### Water Quality Index

The Water Quality Index (WQI) is calculated following (Tiwari and Mishra 1985; Singh 1992; Rao 1997; Mishra and Patel 2001; Gebrehiwot et al. 2011; Hema et al 2018). The groundwater quality issues of aquifers are generally location specific and time variant. The composition of different litho-units, permeability of soils, intensity and the kind of weathering, etc. are some of the natural factors determining the fate and dispersal of hydrochemical signals (especially cations and anions) in well waters. The quality of well water is the outcome of many natural and man-made processes. Water quality classification ranges and types of water based on WQI values is shown in Table 2.

# Table 2. Classification ranges and type of water based on WQI (Krishnakumar etal 2014)

| Range   | Type of Water                          |
|---------|----------------------------------------|
| <50     | Excellent water                        |
| 50-100  | Good water                             |
| 100-200 | Poor water                             |
| 200-300 | Very poor water                        |
| >300    | Water unsuitable for drinking purposes |

Based on the groundwater quality index, 60 % of the samples falls under excellent and 22% of samples falls in good category, 10% of samples accounts to poor and very poor category and 8% of samples are unsuitable for drinking (Table 3). Spatial distribution of water quality indices is given in Fig3.

| S. No | Well No   | Block         | Location       | WQI    | Classification type     |
|-------|-----------|---------------|----------------|--------|-------------------------|
| 1     | KKDOW 012 | Koduvally     | Pullurampara   | 17.59  | Excellent Water         |
| 2     | KKDOW 013 | Koduvally     | Adivaram       | 372.63 | Unsuitable for drinking |
| 3     | KKDOW 014 | Balusseri     | Thalayad       | 30.27  | Excellent Water         |
| 4     | KKDOW 016 | Perambra      | Peruvannamuzhi | 244.47 | Very poor water         |
| 5     | KKDOW 017 | Kunnummal     | Thaleekara     | 30.62  | Excellent Water         |
| 6     | KKDOW 018 | Kozhikode     | Pudiyanirathu  | 71.37  | Good Water              |
| 7     | KKDOW 020 | Thuneri       | Parappupara    | 42.74  | Excellent Water         |
| 8     | KKDOW 156 | Kozhikode     | Beypore        | 66.40  | Good Water              |
| 9     | KKDOW 157 | Kunnamangalam | Mavoor         | 26.84  | Excellent Water         |
| 10    | KKDOW 158 | Kunnamangalam | Chathamangalam | 43.30  | Excellent Water         |
| 11    | KKDOW 159 | Kunnamangalam | Mukkom         | 372.23 | Unsuitable for drinking |
| 12    | KKDOW 160 | Koduvally     | Thamarassery   | 30.59  | Excellent Water         |
| 13    | KKDOW 174 | Panthalayani  | Quilandi       | 117.10 | Poor Water              |
| 14    | KKDOW 175 | Perambra      | Perambra       | 31.98  | Excellent Water         |
|       |           |               |                |        |                         |

Table 3. Water quality index (WQI) classification for individual samples

| S. No | Well No   | Block         | Location                     | WQI    | Classification type     |
|-------|-----------|---------------|------------------------------|--------|-------------------------|
| 15    | KKDOW 176 | Vadakara      | Vadakara                     | 54.16  | Good Water              |
| 16    | KKDOW 177 | Thuneri       | Mahe                         | 50.02  | Good Water              |
| 17    | KKDOW 161 | Koduvally     | Puthuppadi                   | 25.16  | Excellent Water         |
| 18    | QKKDO48   | Kozhikode     | Kozhikode Town               | 61.42  | Good Water              |
| 19    | QKKDO49   | Kozhikode     | Njeliumparamb                | 261.58 | Very poor water         |
| 20    | QKKDO50   | Kozhikode     | Police<br>Station,Feroke     | 36.03  | Excellent Water         |
| 21    | QKKD051   | Kunnamangalam | Homeo<br>Hospital,vellaikode | 29.48  | Excellent Water         |
| 22    | QKKDO52   | Kunnamangalam | Kunnamangalam                | 49.21  | Excellent Water         |
| 23    | QKKD053   | Koduvally     | Palakkutty-<br>koduvally     | 434.72 | Unsuitable for drinking |
| 24    | QKKD054   | Chelannur     | Punnassery                   | 12.67  | Excellent Water         |
| 25    | QKKD055   | Balussery     | Balussery                    | 41.94  | Excellent Water         |
| 26    | QKKD056   | Balussery     | Koorachundu                  | 35.84  | Excellent Water         |
| 27    | QKKD057   | Balussery     | Ulliyeri                     | 53.37  | Good Water              |
| 28    | QKKD058   | Kunnummal     | Nadapuram                    | 33.04  | Excellent Water         |
| 29    | QKKD059   | Panthalayani  | Arikulam                     | 20.50  | Excellent Water         |
| 30    | QKKDO60   | Thodannur     | Maniyur                      | 24.29  | Excellent Water         |
| 31    | QKKD061   | Badagaru      | Madappally                   | 31.42  | Excellent Water         |
| 32    | QKKDO62   | Panthalayani  | Chemanchery                  | 81.41  | Good Water              |

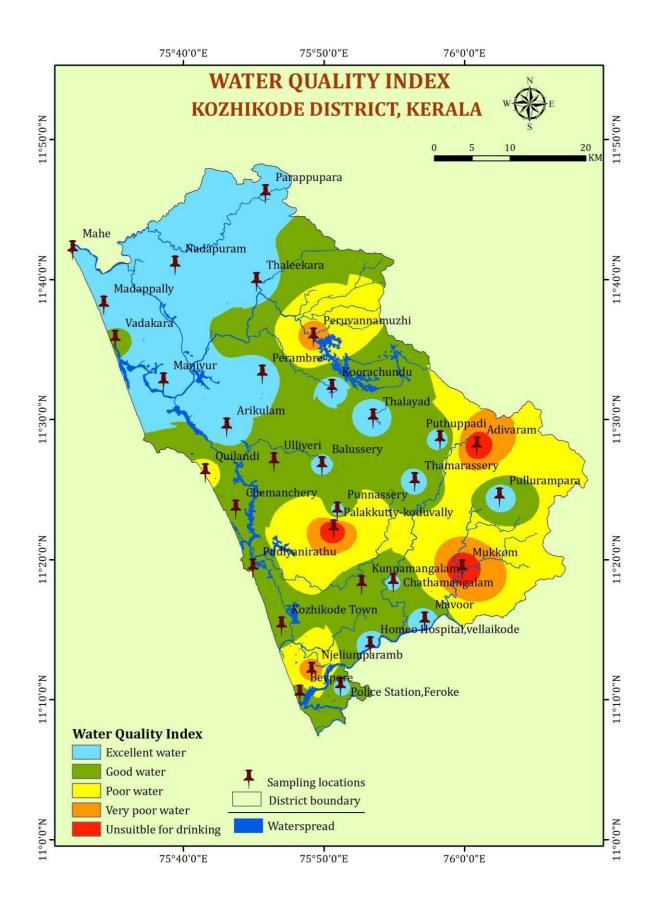



Fig 3. Spatial distribution of water quality indices worked out for the study area

#### Assessment of irrigation water suitability

US salinity diagram: The US salinity lab's diagram (Richards 1954) is used for rating irrigation waters, where SAR is plotted against EC (Fig 3). Majority of the water samples of the study area cluster around the good water quality field C1S1 and C2S1 zones, indicating low to medium salinity water and are suitable for irrigation.

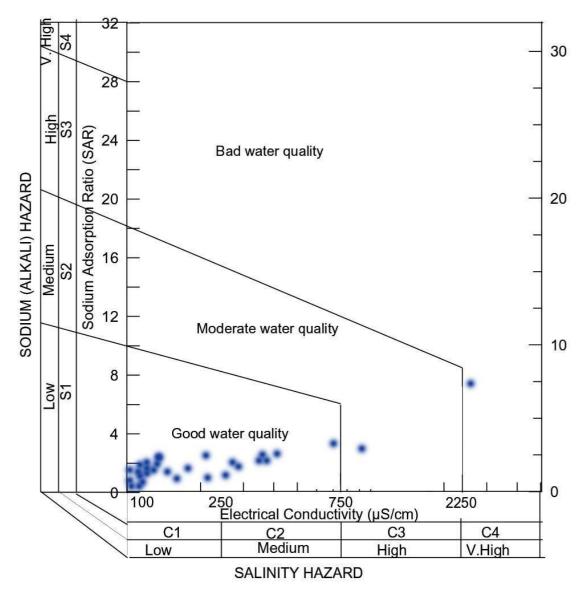



Fig. 3 Irrigation water quality (Richards 1954)

### WATER QUALITY STATUS OF HARD ROCK TERRAIN KANNUR DISTRICT, KERALA

The department samples of Kannur district collected from various hard rock terrain were analyzed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Sodium (Na), potassium (K), Total Hardness (TH), Calcium (Ca), Magnesium (Mg), Total Alkalinity (TA), Carbonate (CO<sub>3</sub>), Bicarbonate (HCO<sub>3</sub>), Sulphate (SO<sub>4</sub>), Chloride (Cl), Nitrate-Nitrogen (NO<sub>3</sub>-N), and Iron (Fe). Fig 1 illustrates the spatial distribution of water quality samples of hard rock terrain in Kannurdistrict.

The results of the physico-chemical parameters (Table 1) of the above samples show that most of the samples for majority of parameters are within the acceptable limits set by BIS (2012).

| Variables              | Minimum | Maximum | Mean  | BIS (2012)          |                   |
|------------------------|---------|---------|-------|---------------------|-------------------|
|                        |         |         |       | Acceptable<br>limit | Permissible limit |
| рН                     | 5.8     | 7.9     | 7.05  | 6.5-8.5             |                   |
| EC                     |         |         |       |                     |                   |
| (µS/cm)                | 53      | 715     | 193   | -                   |                   |
| TDS                    |         |         |       | 500                 | 2000              |
| (mg/l)                 | 31.8    | 429     | 116   | 300                 | 2000              |
| Na (mg/l)              | 1.1     | 29.4    | 8.96  | -                   |                   |
| K (mg/l)               | 0       | 17      | 2     | -                   |                   |
| TH (mg/l               |         |         |       | 200                 | 600               |
| of CaCO3)              | 16      | 192     | 64.5  | 200                 | 000               |
| Ca (mg/l)              | 4.3     | 75      | 20    | 75                  | 200               |
| Mg (mg/l)              | 1       | 16      | 3.9   | 30                  | 100               |
| TA (mg/l               |         |         |       | 200                 | 600               |
| of CaCO3)              | 4.5     | 173     | 37.9  | 200                 | 000               |
| CO <sub>3</sub>        |         |         |       |                     |                   |
| (mg/l)                 | 0       | 0       | 0     | -                   | -                 |
| HCO <sub>3</sub>       |         |         |       |                     |                   |
| (mg/l)                 | 5.5     | 211     | 46.28 | -                   | -                 |
| SO <sub>4</sub> (mg/l) | 1       | 53      | 8.43  | 200                 | 400               |
| Cl (mg/l)              | 7.6     | 112     | 23    | 250                 | 1000              |
| Fe (mg/l)              | 0.12    | 7.21    | 0.95  | 0.3                 | NR                |
| NO <sub>3</sub> -N     |         |         |       | 10                  | ND                |
| (mg/L)                 | 0.1     | 20      | 3.87  | 10                  | NR                |

 Table 1. Statistical summary of physicochemical parameters and its

 with BIS (2012)standards

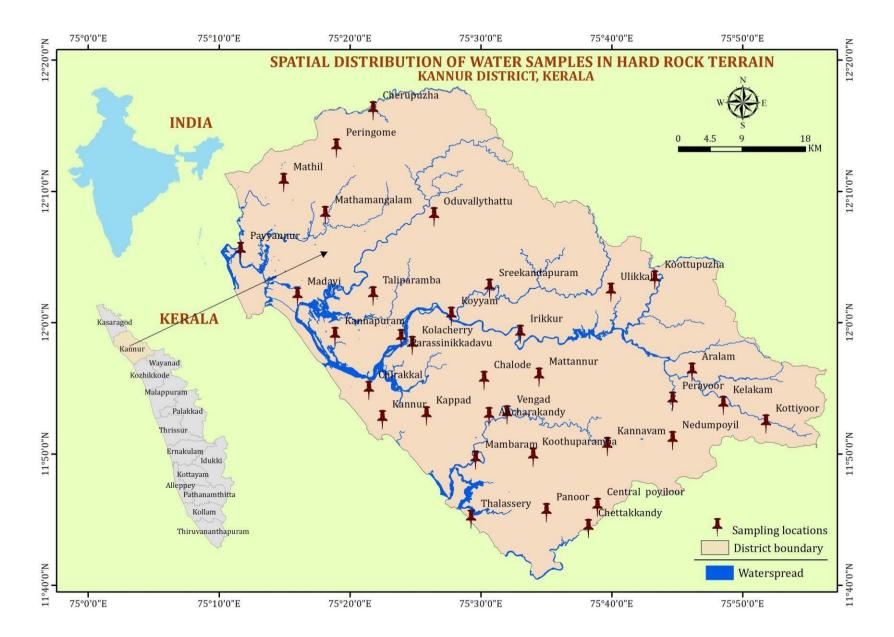



Fig 1. Spatial distribution of sampling locations

#### HydrochemicalFacies and Water type

From the piper trilinear diagram (Fig. 2) it is depicted that the major hydrogeochemical facies are CaHCO<sub>3</sub> water type followed by mixed Ca-Mg-Cl type.

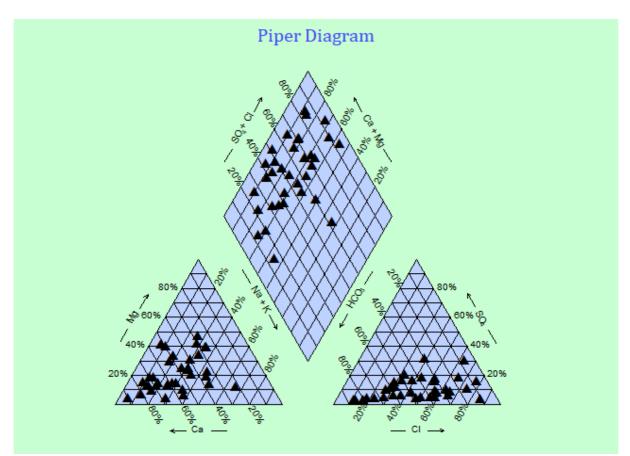
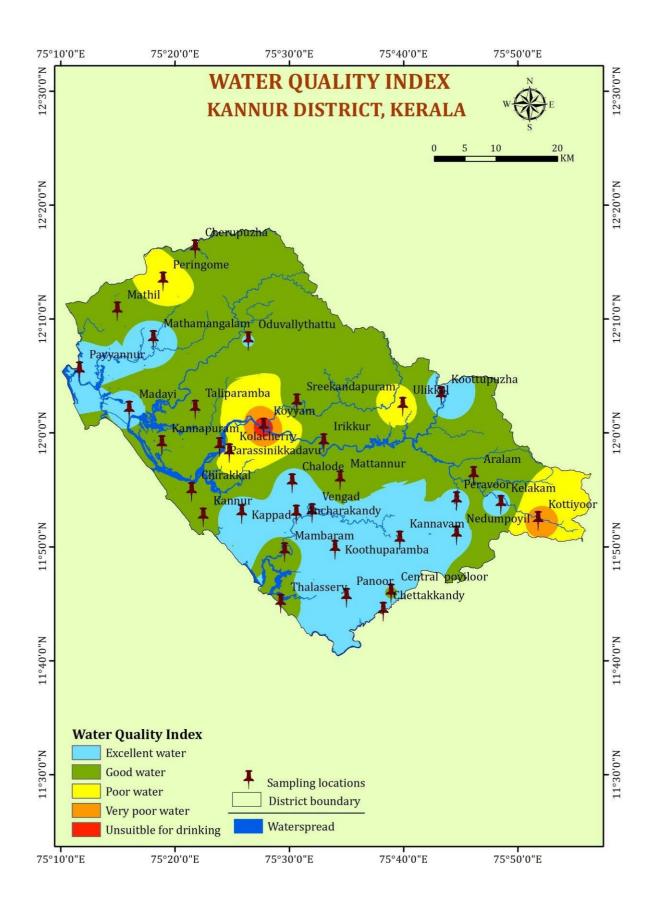



Fig. 2 Piper (1953) diagram showing the relationship between dissolved ions in the water samples

#### Water Quality Index

The Water Quality Index (WQI) is calculated following (Tiwari and Mishra 1985; Singh 1992; Rao 1997; Mishra and Patel 2001; Gebrehiwot et al. 2011; Hema et al 2018). The groundwater quality issues of aquifers are generally location specific and time variant. The composition of different litho-units, permeability of soils, intensity and the kind of weathering, etc. are some of the natural factors determining the fate and dispersal of hydrochemical signals (especially cations and anions) in well waters. The quality of well water is the outcome of many natural andman-made processes. Water quality classification ranges and types of water based on WQI values is shown in Table 2.

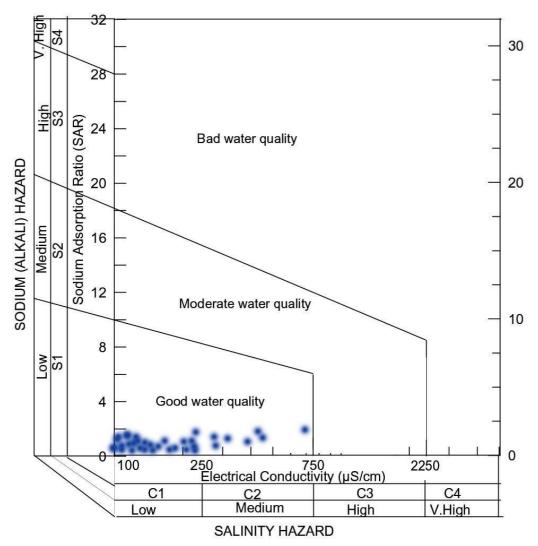
# Table 2. Classification ranges and type of water based on WQI (Krishnakumar etal 2014)

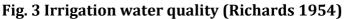

| Range   | Type of Water                          |
|---------|----------------------------------------|
| <50     | Excellent water                        |
| 50-100  | Good water                             |
| 100-200 | Poor water                             |
| 200-300 | Very poor water                        |
| >300    | Water unsuitable for drinking purposes |

Based on the groundwater quality index, 49 % of the samples falls under excellent and 38% of samples falls in good category, 10% of samples accounts to poor and very poor category and 3% of samples are unsuitable for drinking (Table 3). Spatial distribution of water quality indices is given in Fig3.

| S. No | Well No     | Block       | Location         | WQI    | Classification type        |
|-------|-------------|-------------|------------------|--------|----------------------------|
| 1     | KNR-POW-C22 | Edakkad     | Ancharakandy     | 21.31  | Excellent Water            |
| 2     | KNR-POW-C25 | Edakkad     | Kappad           | 21.06  | Excellent Water            |
| 3     | KNR-POW-C1  | Kannur      | Chirakkal        | 51.34  | Good Water                 |
| 4     | KNR-POW-C5  | Taliparamba | Kannapuram       | 57.79  | Good Water                 |
| 5     | KNR-MOW181  | Kannur      | Kannur           | 50.99  | Good Water                 |
| 6     | KNR-MOW184  | Payyannur   | Madayi           | 40.78  | Excellent Water            |
| 7     | KNR-POW-C4  | Taliparamba | Parassinikkadavu | 45.62  | Excellent Water            |
| 8     | KNR-POW-C6  | Payyannur   | Mathil           | 54.13  | Good Water                 |
| 9     | KNR-POW-C2  | Irikkur     | Kolacherry       | 164.04 | Poor Water                 |
| 10    | KNR-POW-C8  | Taliparamba | Oduvallythattu   | 47.80  | Excellent Water            |
| 11    | KNR-MOW187  | Payyannur   | Mathamangalam    | 15.57  | Excellent Water            |
| 12    | KNR-POW-C10 | Irikkur     | Koyyam           | 363.88 | Unsuitable for<br>drinking |
| 13    | KNR-MOW186  | Payyannur   | Payyannur        | 40.91  | Excellent Water            |
|       |             |             |                  |        |                            |

 Table 3. Water quality index (WQI) classification for individual samples


| S. No | Well No     | Block         | Location         | WQI    | Classification type |
|-------|-------------|---------------|------------------|--------|---------------------|
| 14    | KNR-MOW190  | Payyannur     | Peringome        | 167.16 | Poor Water          |
| 15    | KNR-MOW183  | Irikkur       | Sreekandapuram   | 53.35  | Good Water          |
| 16    | KNR-POW-C7  | Taliparamba   | Taliparamba      | 57.87  | Good Water          |
| 17    | KNR-MOW189  | Payyannur     | Cherupuzha       | 55.77  | Good Water          |
| 18    | KNR-POW-C12 | Irikkur       | Ulikkal          | 129.45 | Poor Water          |
| 19    | KNR-POW-C14 | Iritty        | Aralam           | 51.49  | Good Water          |
| 20    | KNR-POW-C21 | Koothuparamba | Mambaram         | 66.53  | Good Water          |
| 21    | KNR-POW-C17 | Peravoor      | Kannavam         | 23.77  | Excellent Water     |
| 22    | KNR-POW-C15 | Peravoor      | Kelakam          | 33.02  | Excellent Water     |
| 23    | KNR-MOW173  | Iritty        | Mattannur        | 69.07  | Good Water          |
| 24    | KNR-POW-C18 | Thalassery    | Central poyiloor | 51.33  | Good Water          |
| 25    | KNR-POW-C24 | Iritty        | Chalode          | 19.52  | Excellent Water     |
| 26    | KNR-MOW179  | Koothuparamba | Koothuparamba    | 31.53  | Excellent Water     |
| 27    | KNR-POW-C16 | Peravoor      | Kottiyoor        | 248.91 | Very poor water     |
| 28    | KNR-MOW172  | Peravoor      | Peravoor         | 46.75  | Excellent Water     |
| 29    | KNR-POW-C23 | Koothuparamba | Vengad           | 27.20  | Excellent Water     |
| 30    | KNR-MOW178  | Koothuparamba | Panoor           | 44.44  | Excellent Water     |
| 31    | KNR-MOW182  | Irikkur       | Irikkur          | 66.34  | Good Water          |
| 32    | KNR-POW-C19 | Thalassery    | Chettakkandy     | 41.49  | Excellent Water     |
| 33    | KNR-MOW180  | Thalassery    | Thalassery       | 55.99  | Good Water          |
| 34    | KNR-MOW171  | Peravoor      | Nedumpoyil       | 44.07  | Excellent Water     |
| 35    | KNR-POW-C11 | Iritty        | Koottupuzha      | 23.12  | Excellent Water     |




#### Fig 3. Spatial distribution of water quality indices worked out for the study area

#### Assessment of irrigation water suitability

US salinity diagram: The US salinity lab's diagram (Richards 1954) is used for rating irrigation waters, where SAR is plotted against EC (Fig 3). All of the water samples of the study area cluster around the good water quality field C1S1 and C2S1 zones, indicating low to medium salinity water and are suitable for irrigation.





#### **KASARAGOD**

The department samples of Kasaragod district collected from various hard rock terrain were analyzed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Sodium (Na), potassium (K), Total Hardness (TH), Calcium (Ca), Magnesium (Mg), Total Alkalinity (TA), Carbonate (CO<sub>3</sub>), Bicarbonate (HCO<sub>3</sub>), Sulphate (SO<sub>4</sub>), Chloride (Cl), Nitrate-Nitrogen (NO<sub>3</sub>-N), and Iron (Fe). Fig 1 illustrates the spatial distribution of water quality samples of hard rock terrain in Kasaragoddistrict.

The results of the physico-chemical parameters (Table 1) of the above samples showed that most of the samples for majority of parameters lie under the acceptable limits set by BIS (2012).

| Variables              | Minimum | Maximum | Mean  | BIS (2012)          |                   |
|------------------------|---------|---------|-------|---------------------|-------------------|
|                        |         |         |       | Acceptable<br>limit | Permissible limit |
| рН                     | 4.2     | 7.9     | 6.9   | 6.5-8.5             |                   |
| EC                     |         |         |       | _                   |                   |
| (µS/cm)                | 30      | 440     | 159.2 |                     |                   |
| TDS                    |         |         |       | 500                 | 2000              |
| (mg/l)                 | 18      | 264     | 95.5  | 500                 | 2000              |
| Na (mg/l)              | 2.4     | 33.1    | 9.17  | -                   |                   |
| K (mg/l)               | 0.04    | 13.7    | 2     | -                   |                   |
| TH (mg/l               |         |         |       | 200                 | 600               |
| of CaCO3)              | 10.64   | 160     | 58.42 | 200                 | 000               |
| Ca (mg/l)              | 2.13    | 55.3    | 14.6  | 75                  | 200               |
| Mg (mg/l)              | 1.3     | 22      | 5.3   | 30                  | 100               |
| TA (mg/l               |         |         |       | 200                 | 600               |
| of CaCO3)              | 0       | 161     | 41.04 | 200                 | 000               |
| CO <sub>3</sub>        |         |         |       |                     |                   |
| (mg/l)                 | 0       | 0       | 0     | -                   | -                 |
| HCO <sub>3</sub>       |         |         |       |                     |                   |
| (mg/l)                 | 0       | 197     | 50.11 | -                   | -                 |
| SO <sub>4</sub> (mg/l) | 0       | 31      | 8.04  | 200                 | 400               |
| Cl (mg/l)              | 9       | 67.5    | 20.11 | 250                 | 1000              |
| Fe (mg/l)              | 0.12    | 9.5     | 3.4   | 0.3                 | NR                |
| NO <sub>3</sub> -N     |         |         |       | 10                  | NR                |
| (mg/L)                 | 0       | 5       | 1.26  | 10                  | INK               |

 Table 1. Statistical summary of physicochemical parameters and its

 with BIS (2012)standards

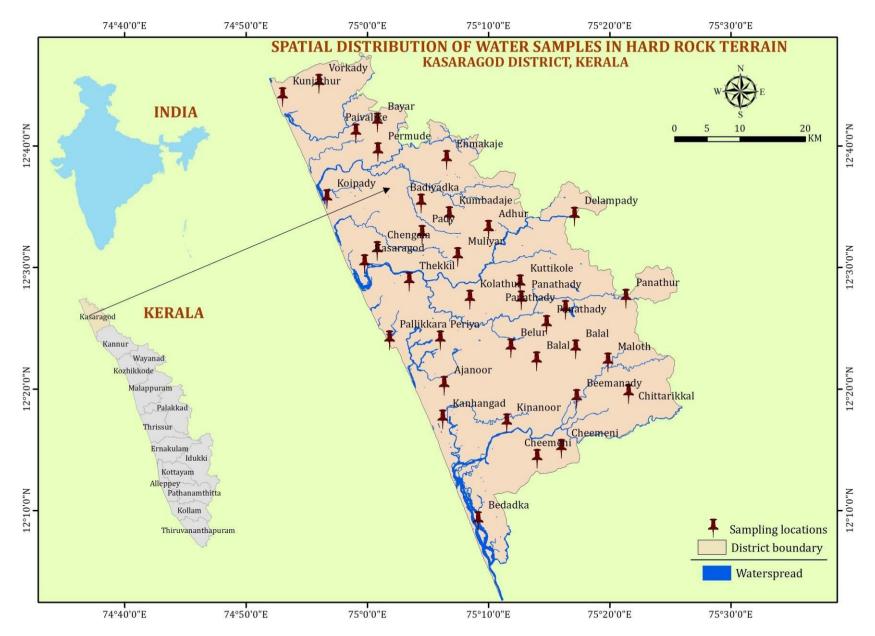



Fig 1. Spatial distribution of sampling locations

#### HydrochemicalFacies and Water type

From the piper trilinear diagram (Fig. 2) it is depicted that the major hydrogeochemical facies are Ca-Mg-Cl and CaHCO<sub>3</sub> water type.

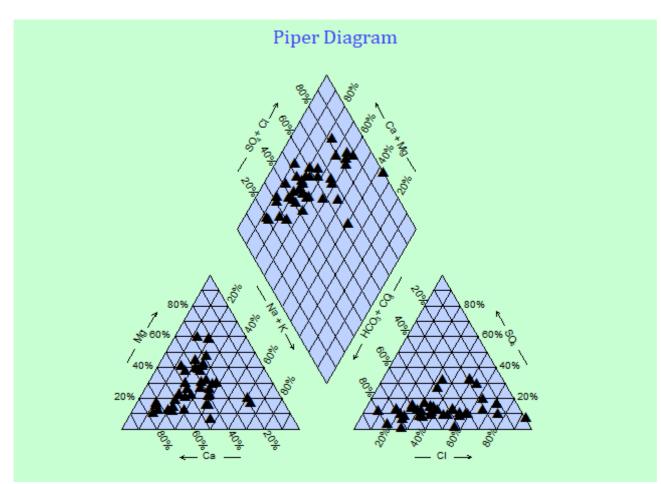



Fig. 2 Piper (1953) diagram showing the relationship between dissolved ions in the water samples

#### Water Quality Index

The Water Quality Index (WQI) is calculated following (Tiwari and Mishra 1985; Singh 1992; Rao 1997; Mishra and Patel 2001; Gebrehiwot et al. 2011; Nair et al 2018). The groundwater quality issues of aquifers are generally location specific and time variant. The composition of different litho-units, permeability of soils, intensity and the kind of weathering, etc. are some of the natural factors determining the fate and dispersal of hydrochemical signals (especially cations and anions) in well waters. The quality of well water is the outcome of many natural and man-made processes. Water quality classification ranges and types of water based on WQI values is shown in Table 2.

# Table 2. Classification ranges and type of water based on WQI (Krishnakumar etal 2014)

| Range   | Type of Water                          |
|---------|----------------------------------------|
| <50     | Excellent water                        |
| 50-100  | Good water                             |
| 100-200 | Poor water                             |
| 200-300 | Very poor water                        |
| >300    | Water unsuitable for drinking purposes |

Based on the groundwater quality index, 8 % of the samples falls under excellent and 30% of samples falls in good category, 44% of samples accounts to poor and very poor category and 18% of samples are unsuitable for drinking (Table 3). Spatial distribution of water quality indices is given in Fig 3.

| S. No | Well No | Block      | Location   | WQI    | Classification type        |
|-------|---------|------------|------------|--------|----------------------------|
| 1     | 192     | Nileswaram | Cheemeni   | 111.05 | Poor Water                 |
| 2     | 193     | Kanhangad  | Pallikkara | 265.54 | Very poor water            |
| 3     | 195     | Kanhangad  | Ajanoor    | 261.85 | Very poor water            |
| 4     | 196     | Kanhangad  | Belur      | 263.14 | Very poor water            |
| 5     | 197     | Kanhangad  | Balal      | 48.40  | Good Water                 |
| 6     | 198     | Nileswar   | Beemanady  | 291.86 | Very poor water            |
| 7     | 199     | Kanhangad  | Periya     | 38.44  | Excellent Water            |
| 8     | 202     | Kasaragod  | Adhur      | 190.88 | Poor Water                 |
| 9     | 203     | Manjeswar  | Badiyadka  | 320.84 | Unsuitable for<br>drinking |
| 10    | 204     | Manjeswar  | Mangalpady | 161.93 | Poor Water                 |
| 11    | 207     | Manjeswar  | Enmakaje   | 104.81 | Poor Water                 |
| 12    | 208     | Manjeswar  | Vorkady    | 29.00  | Excellent Water            |
| 13    | 209     | Nileswaram | Kunjathur  | 111.05 | Poor Water                 |
|       |         |            |            |        |                            |
|       |         |            |            |        |                            |

Table 3. Water quality index (WQI) classification for individual samples

| S. No | Well No | Block     | Location     | WQI    | Classification type        |
|-------|---------|-----------|--------------|--------|----------------------------|
| 14    | 210     | Manjeswar | Bayar        | 71.75  | Good Water                 |
| 15    | 211     | Kasaragod | Kumbadaje    | 32.39  | Excellent Water            |
| 16    | 212     | Manjeswar | Pady         | 259.25 | Very poor water            |
| 17    | 213     | Kasaragod | Delampady    | 67.35  | Good Water                 |
| 18    | 214     | Kasaragod | Bedadka      | 437.28 | Unsuitable for<br>drinking |
| 19    | 215     | Kanhangad | Panathady    | 301.65 | Unsuitable for<br>drinking |
| 20    | 216     | Nileswar  | Kanhangad    | 122.33 | Poor Water                 |
| 21    | KSOW-01 | Kasaragod | Kasaragod    | 179.86 | Poor Water                 |
| 22    | KSOW-04 | Manjeswar | Paivalike    | 76.90  | Good Water                 |
| 23    | KSOW-05 | Manjeswar | Permude      | 313.88 | Unsuitable for<br>drinking |
| 24    | KSOW-08 | Kasaragod | Muliyar      | 51.97  | Good Water                 |
| 25    | KSOW-09 | Kasaragod | Thekkil      | 54.62  | Good Water                 |
| 26    | KSOW-10 | Kasaragod | Kolathur     | 399.63 | Unsuitable for<br>drinking |
| 27    | KSOW-11 | Kasaragod | Kuttikole    | 125.68 | Poor Water                 |
| 28    | KSOW-14 | Nileswar  | Cheemeni     | 71.19  | Good Water                 |
| 29    | KSOW-16 | Kanhangad | Panathady    | 469.91 | Unsuitable for<br>drinking |
| 30    | KSOW-17 | Kanhangad | Panathady    | 88.48  | Good Water                 |
| 31    | KSOW-18 | Kanhangad | Panathur     | 110.63 | Poor Water                 |
| 32    | KSOW-19 | Kanhangad | Balal        | 154.60 | Poor Water                 |
| 33    | KSOW-20 | Kanhangad | Maloth       | 73.36  | Good Water                 |
| 34    | KSOW-22 | Nileswar  | Chittarikkal | 264.89 | Very poor water            |
| 35    | KSOW-24 | Nileswar  | Kinanoor     | 104.09 | Poor Water                 |
| 36    | KSOW-25 | Kasaragod | Chengala     | 86.54  | Good Water                 |
| 37    | KSOW-02 | Manjeswar | Koipady      | 87.15  | Good Water                 |

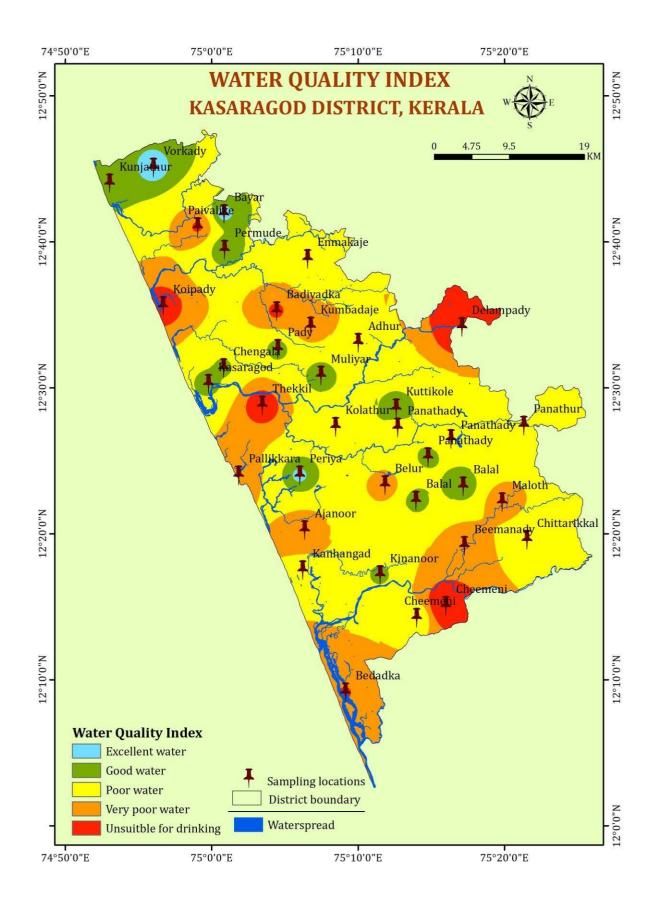



Fig 3. Spatial distribution of water quality indices worked out for the study area

#### Assessment of irrigation water suitability

US salinity diagram: The US salinity lab's diagram (Richards 1954) is used for rating irrigation waters, where SAR is plotted against EC (Fig 3). All of the water samples of the study area cluster around the good water quality field C1S1 and C2S1 zones, indicating low to medium salinity water and are suitable for irrigation.

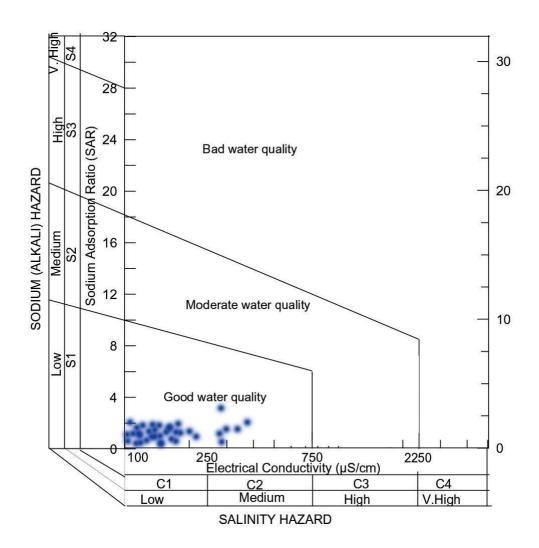



Fig. 3 Irrigation water quality (Richards 1954)

#### WAYANAD DISTRICT

The department samples of Wayanad district collected from various hard rock terrain were analyzed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Sodium (Na), potassium (K), Total Hardness (TH), Calcium (Ca), Magnesium (Mg), Total Alkalinity (TA), Carbonate (CO<sub>3</sub>), Bicarbonate (HCO<sub>3</sub>), Sulphate (SO<sub>4</sub>), Chloride (Cl), Nitrate-Nitrogen (NO<sub>3</sub>-N), and Iron (Fe). Fig 1 illustrates the spatial distribution of water quality samples of hard rock terrain in Wayanaddistrict.

The results of the physico-chemical parameters (Table 1) of the above samples showed that most of the samples for majority of parameters lie under the acceptable limits set by BIS (2012).

| Variables                  | Minimum | Maximum | Mean   | BIS (2012)                       |      |
|----------------------------|---------|---------|--------|----------------------------------|------|
|                            |         |         |        | Acceptable limit Permissible lim |      |
| рН                         | 6.3     | 8.2     | 7.42   | 6.5-8.5                          |      |
| EC<br>(μS/cm)              | 54      | 549     | 238    | -                                |      |
| TDS<br>(mg/l)              | 32.4    | 329.4   | 142.78 | 500                              | 2000 |
| Na (mg/l)                  | 1.5     | 42.1    | 14     | -                                |      |
| K (mg/l)                   | 0.42    | 19.5    | 4.12   | -                                |      |
| TH (mg/l<br>of CaCO3)      | 21      | 186     | 74.69  | 200                              | 600  |
| Ca (mg/l)                  | 4.3     | 57.4    | 20.12  | 75                               | 200  |
| Mg (mg/l)                  | 1.3     | 25.5    | 5.96   | 30                               | 100  |
| TA (mg/l<br>of CaCO3)      | 5       | 186     | 51.65  | 200                              | 600  |
| CO <sub>3</sub><br>(mg/l)  | 0       | 13.8    | 0.53   | -                                | -    |
| HCO <sub>3</sub><br>(mg/l) | 5.6     | 199     | 61.9   | -                                | -    |
| SO <sub>4</sub> (mg/l)     | 0.8     | 29      | 10.52  | 200                              | 400  |
| Cl (mg/l)                  | 8       | 75      | 28.4   | 250                              | 1000 |
| Fe (mg/l)                  | 0       | 0.93    | 0.18   | 0.3                              | NR   |
| NO3-N<br>(mg/L)            | 1       | 13      | 6.91   | 10                               | NR   |

 Table 1. Statistical summary of physicochemical parameters and its

 with BIS (2012)standards

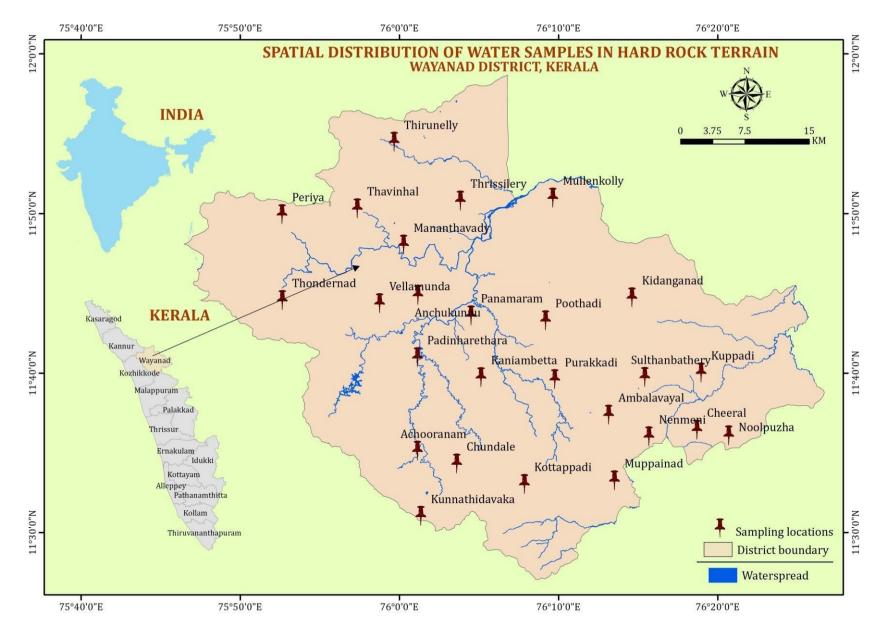



Fig 1. Spatial distribution of sampling locations

#### HydrochemicalFacies and Water type

From the piper trilinear diagram (Fig. 2) it is depicted that the major hydrogeochemicalfacies are that majority of samples fall in non-dominant type followed by Ca-Mg\_Cl type of water.

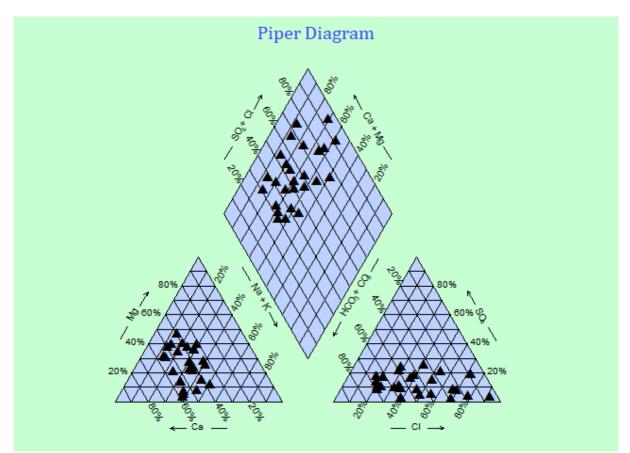



Fig. 2 Piper (1953) diagram showing the relationship between dissolved ions in the water samples

#### Water Quality Index

The Water Quality Index (WQI) is calculated following (Tiwari and Mishra 1985; Singh 1992; Rao 1997; Mishra and Patel 2001; Gebrehiwot et al. 2011; Hema et al 2018). The groundwater quality issues of aquifers are generally location specific and time variant. The composition of different litho-units, permeability of soils, intensity and the kind of weathering, etc. are some of the natural factors determining the fate and dispersalofhydrochemicalsignals(especiallycationsandanions)inwellwaters.The quality of well water is the outcome of many natural and man-made processes. Water quality classification ranges and types of water based on WQI values is shown in Table 2.

| Range   | Type of Water                          |  |
|---------|----------------------------------------|--|
| <50     | Excellent water                        |  |
| 50-100  | Good water                             |  |
| 100-200 | Poor water                             |  |
| 200-300 | Very poor water                        |  |
| >300    | Water unsuitable for drinking purposes |  |

# Table 2. Classification ranges and type of water based on WQI (Krishnakumar etal 2014)

Based on the groundwater quality index, 74 % of the samples falls under excellent and rest 26% of samples falls in good category (Table 3). Spatial distribution of water quality indices is given in Fig3.

| S. No | Well No | Block          | Location     | WQI   | Classification type |
|-------|---------|----------------|--------------|-------|---------------------|
| 1     | 167     | Mananthavady   | Anchukunnu   | 42.85 | Excellent Water     |
| 2     | SOW-11  | Sulthanbathery | Mananthavady | 58.72 | Good Water          |
| 3     | 166     | Mananthavady   | Panamaram    | 31.60 | Excellent Water     |
| 4     | 170     | Sulthanbathery | Periya       | 33.75 | Excellent Water     |
| 5     | SOW-12  | Sulthanbathery | Thavinhal    | 33.39 | Excellent Water     |
| 6     | SOW-14  | Mananthavady   | Thirunelly   | 14.94 | Excellent Water     |
| 7     | 169     | Kalpetta       | Thondernad   | 34.07 | Excellent Water     |
| 8     | SOW-13  | Sulthanbathery | Thrissilery  | 72.96 | Good Water          |
| 9     | 168     | Mananthavady   | Vellamunda   | 30.62 | Excellent Water     |
| 10    | 164     | Sulthanbathery | Ambalavayal  | 60.29 | Good Water          |
| 11    | SOW-4   | Sulthanbathery | Cheeral      | 79.90 | Good Water          |
| 12    | SOW-7   | Sulthanbathery | Kidanganad   | 34.90 | Excellent Water     |
| 13    | SOW-6B  | Sulthanbathery | Kuppadi      | 71.26 | Good Water          |
| 14    | SOW-9   | Sulthanbathery | Mullenkolly  | 42.85 | Excellent Water     |

 Table 3. Water quality index (WQI) classification for individual samples

| S. No | Well No | Block          | Location       | WQI            | Classification type |
|-------|---------|----------------|----------------|----------------|---------------------|
| 15    | SOW-3   | Sulthanbathery | Nenmeni        | 62.66          | Good Water          |
| 16    | SOW-5   | Sulthanbathery | Noolpuzha      | 39.00          | Excellent Water     |
| 17    | SOW-10  | Sulthanbathery | Poothadi       | Poothadi 42.89 |                     |
| 18    | SOW-18  | Kalpetta       | Purakkadi      | 36.82          | Excellent Water     |
| 19    | 165     | Mananthavady   | Sulthanbathery | 40.67          | Excellent Water     |
| 20    | SOW-16  | Mananthavady   | Achooranam     | 59.33          | Good Water          |
| 21    | 162     | Kalpetta       | Chundale       | 31.56          | Excellent Water     |
| 22    | SOW-17  | Kalpetta       | Kaniambetta    | 41.80          | Excellent Water     |
| 23    | 163     | Kalpetta       | Kottappadi     | 38.80          | Excellent Water     |
| 24    | SOW-1   | Sulthanbathery | Kunnathidavaka | 42.11          | Excellent Water     |
| 25    | SOW-2   | Sulthanbathery | Muppainad      | 27.78          | Excellent Water     |
| 26    | SOW-15  | Mananthavady   | Padinharethara | 43.22          | Excellent Water     |

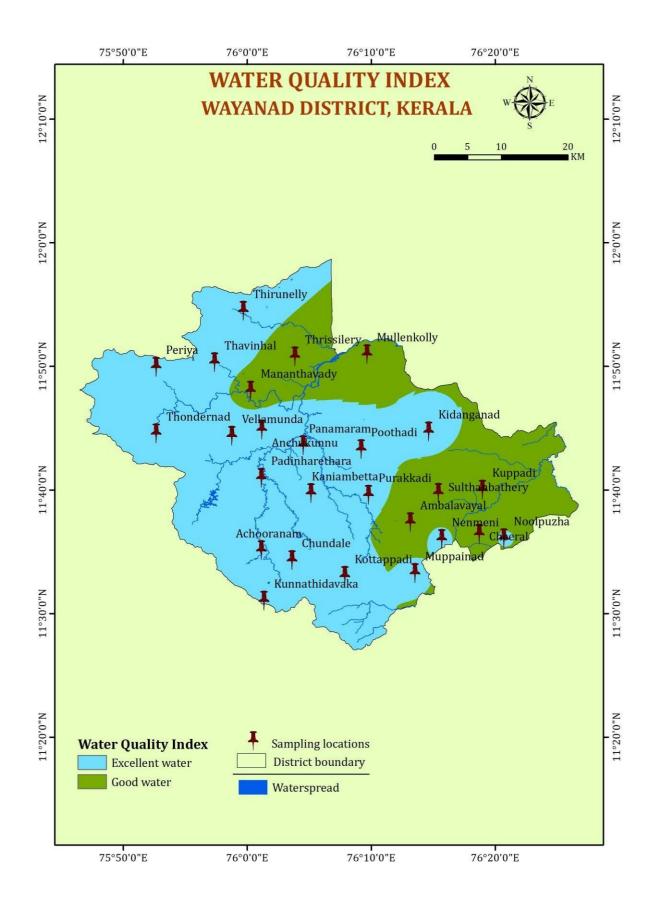



Fig 3. Spatial distribution of water quality indices worked out for the study area

#### Assessment of irrigation water suitability

US salinity diagram: The US salinity lab's diagram (Richards 1954) is used for rating irrigation waters, where SAR is plotted against EC (Fig 3). All of the water samples of the study area cluster around the good water quality field C1S1 and C2S1 zones, indicating low to medium salinity water and are suitable for irrigation.

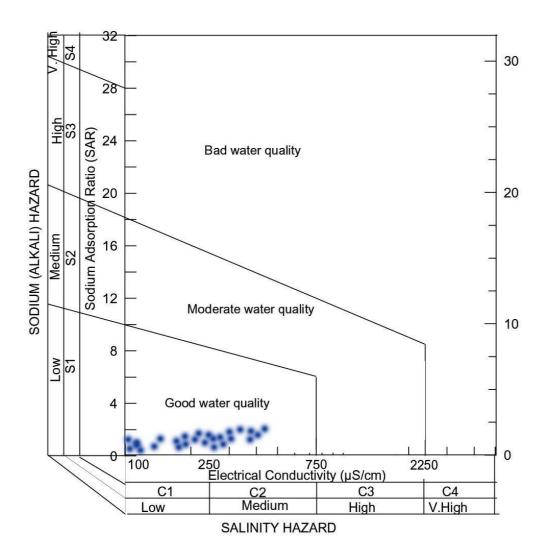



Fig. 3 Irrigation water quality (Richards 1954)

#### **References:-**

Gebrehiwot AB, Tadesse N, Jigar E (2011) Application of water quality index to assess suitability of groundwater quality for drinking purposes in Hantebet Watershed, Tigray, northern Ethiopia, ISASB. J Food AgriSci 1:22–30

Mishra PC, Patel RK (2001) Study of the pollution load in the drinking water of Rairangpur, a small tribal dominated town of North Orissa, Indian. J Environ Ecoplanning 5(2):293–298

Nair, H.C., Padmalal, D., Joseph, A. Vinod,P.G. (2018) Hydrogeochemistry andwater quality assessment of shallow aquifers in the western flanks of Southern WesternGhats, SW India. Arab J Geosci 11, 73

Piper AM (1953) A graphical procedure in the geochemical interpretation of water analysis. USGS Groundwater Note No 12

Rao NS (1997) Studies on water quality index in hard rock terrain of Guntur District, Andhra Pradesh, India. National Seminar on Hydrogeology of Precambrian Terrains and Hard Rocks Areas, Dharwad, pp 129–134

Richards LA (1954) Diagnosis and improvement of saline alkali soils: agriculture, 160. Handbook 60. US Department of Agriculture, Washington

Singh DF (1992) Studies on the water quality index of some major rivers of Pune, Maharashtra. ProcAcad Environ Biol 1(1):61–66

Tiwari TN, Mishra MA (1985) A preliminary assignment of water quality index of major Indian rivers, Indian. J Environ Prot 5:276–279 Todd DK (1980) Ground water hydrology. Wiley, New York